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ABSTRACT: Coupling reactions to make esters and amides
are among the most widely used organic transformations. We
report efficient procedures for amide bond formation and for
the monoesterification of symmetrical diols in excellent yields
without any requirement for high dilution or slow addition
using resin-bound triarylphosphonium iodide. Easy purifica-
tion, low moisture sensitivity, and good to excellent yields of
the products are the major advantages of this protocol.

@hh le

R~

Ph
3 .

+  HO(CH,),OH 1
R “OH (CHgh 4DMAP, THF-DCM, RT 1 O(CH2):OH
R'= alkyl, aryl, heteroaryl Features Upto 92% yield
No dilution

n=6,8 No excess diols

No slow addition
No chromatography

KEYWORDS: resin-bound triphenylphosphine, selectivity, monoesterification, amides, symmetrical diols, -DMAP

S olid-phase organic synthesis (SPOS) continues to evolve as
a means to create and modify compound libraries via
combinatorial chemistry." The important advantages of solid-
phase synthesis include purification of products by simple
filtration of the polymer matrix, easy handling, low moisture
susceptibility, minimum side reaction, and recyclability of the
polymer matrix for repeated use.” Resin-bound triphenylphos-
phine is a good example® because it avoids many of the problems
common to the use of PPh; in solution, such as the removal of
excess triphenylphosphine, the formation of phosphine complexes,
and the difficulty in removing byproduct triphenylphosphine
oxide." Moreover, for the reactions where resin-bound triphenyl-
phosphine acts as an oxygen-acceptor, recycling by reduction of
triphenylphosphine oxide with trichlorosilane is convenient.®
Carboxylic acid esters and amides are important functional
groups, and so many synthetic methods have been reported.’
Among the mildest of these include the use of hypervalent
iodine,” O—alkylisoureas,g DEAD/Ph3P,9 organocatalytic Mitsuno-
bu reactions,'’ Yamaguchi conditions (TCBC, DIPEA, DMAP),""
DIC/DMAP,"* ethyl 2-cyano-2-(4-nitrophenylsulfonyloxyimino)-
acetate,"” HCIO4—SiOZ,14 and dodecylbenzenesulfonic acid
(DBSA)." In addition to some practical disadvantages, many of
these methods are unable to discriminate between multiple
nucleophilic sites, and thus it remains a challenge to reliably
prepare monoesters from di- or polyhydroxylated substrates.
Recently, Robles et al.'® reported mild methods of esterifica-
tion using Gregg-Samuelson-type conditions."” Manna et al."®
also reported a chemoselective esterification using triphenyl-
phosphine, I, and catalytic amount of Zn (OTf),. While
attractive in their selectivity and mild nature, the use of soluble
PPh; leads to the process disadvantages noted above. We report
here that the use of solid-phase triphenylphosphine makes for a
superior esterification method with useful application to diols.
Stimulated by our previous observations of useful catalytic
transformations mediated by resin-bound triphenylphosphine
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Scheme 1. Formation and Use of Reagent 1
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Table 1. Screening of Base for Esterification Reaction”

(0]
O 1
o "
OH + "OH
Base
entry base time (min) yield (%)°

1 pyridine 45 58
2 imidazole 45 68
3 K,CO, 45 NR
4 Et;N 45 S1
R 4-DMAP 20 91
6 60 NR

“Reaction condition: carboxylic acid (1 mmol, 1 equiv), alcohol
(1 equiv), 4-DMAP (3 equiv), 1 (1.5 equiv), 20 mL of THF-DCM
(1:3 v/v mixture), room temperature. “Isolated yield. NR: no reaction.

and iodine,” we investigated the use of a resin-bound
triphenylphosphine-I, complex (1) for the synthesis of esters
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Table 2. Esterification Reactions under Optimized
Conditions”

Entry Acid Alcohol Product Time \((;/e;f
b
N [¢)
1 Propionic acid n-Ci2H2s0H \)LO/Wszst ) 15 86
o
2 n-CsH;0H 15 93
et n—CsHﬂ/KO/\/ 3
Hexanoic acid
: BN XA, | =] e
HO™ “n-C4Hg n-CsHyy~ ~O 4
o
4 PhOH 25 78
6-Bromohexanoic Br(CHp)s~ ~O 5
acid °
5 4-Me-PhOH 6 20 82
Br(CHy)s (9]
o
6 n-Cy2H1s0H ©)J\O/n Ciahas 25 85
[¢)
7 PhCOH HOJ\@ ©)\0J\© 5 | 75
8
O
8 PhOH o 25 80
9
9 n-CgH;,0H

4-Nitrobenzoic _n-CyoH
10 acld N-C15H,s0H ﬁo 1272 15 87
1
ON
(o]

1 4-Me-PhOH o : 25 79
12
O,N
o
12 4-Methox;/ben20|c 1-CoHrOH o CeH1 40 78
acid 13
MeO
o
3.4-
13 | Dimethoxybenzoic n-CgH1,OH MeO o Cettr 40 65
acid M 14
eO’
o
14 | 2-Naphthoic acid n-CeH17,OH o~ -CeHiz 40 83
15
¢}
15 Picolinic acid PhCH,OH N o 20 82
N 16

“Reaction condition: carboxylic acid (1 mmol, 1 equiv), alcohol (1 equiv),
4-DMAP (3 equiv), 1 (1.5 equw), 20 mL of THE-DCM (1:3 v/v
mixture), room temperature. “Isolated yield.

and amides (Scheme 1). The reagent 1, was easily prepared
by the reaction between resin-bound triphenylphosphine and I,
in anhydrous dichloromethane under nitrogen atmosphere
(Scheme 1).*° It is stable at room temperature (25 °C) and can
be stored for long time under vacuum.

A test reaction, the esterification of benzoic acid with 1-propanol
in anhydrous THF-DCM (1:3) at room temperature, did not
proceed at all after several hours at room temperature in the
presence of 1. The addition of 4-DMAP gave complete reaction
within 20 min, allowing for isolation of the desired ester in 91%
yield. DMAP was found to be a superior base relative to several
others tested (Table 1); the 1:3 THF:DCM mixture in the
presence of 3 equiv of base per equivalent of alcohol and acid
were found to be optimal conditions (data not shown).

Table 2 shows the results of an investigation of the scope and
limitations of the reaction. Desired esters were isolated in good
to excellent yield for primary, secondary, and aromatic alcohols.
As expected, electron-deficient benzoic acids required shorter
reaction times (entries 9—11) than electron-rich cases (entries
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Scheme 2. Selective Esterification under Optimized Reaction
Conditions
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Table 3. Selective Esterification of Carboxylic Acid under
Optimized Conditions”

Entry Acid Alcohol Product Time \:L?I)d
o
88
1 PhCOH ©AO(CH2)GOH 20 45°
) ] 0 9
2 Propionic acid 18 >
0(0H2>50H 45
o
3 Pentanoic acid 18 87
HO(CH,)sOH \/\)J\O(CHz)BOH
4-Methylbenzoic
20
5 4-N|tro§enzonc /@)kO(CHz)eOH 20 92
acid
3-Nitrobenzoic
6 acid ©)\ CHZ)BOH 2
7 PhCOH HO(CH:)OH ©)J\O(CH2)BOH 20 | 85
(o]
8 Lauric acid 18 o1
n-Cy4Hag O(CHQ)BOH
9 PhCO,H HO(CH,)s0TBS ©)J\O(CH2)SOTBS 22 84
_Ni . O(CH,)sOTHP
10 4 Nltroeen10|c HO(CH;)OTHP /©)J\ (CHy)g 26 | 20 86
acid
O,N
N ) HO 0,
" 4 N|trobenzmc /\[ >< /@)k /\[ 20 92
acid o
O 27

“Reaction condition: carboxylic acid (1 mmol, 1 equiv), alcohol (1 equiv),
4-DMAP (3 equiv), 1 ( LS equiv), 20 mL of THF-DCM (1:3 v/v mixture),
room temperature. “Soluble triphenylphosphonium-iodide complex
was used instead of reagent 1.

12—13). Similarly, phenols were successfully coupled to
carboxylic acid giving good yields (entries 4 and 8).

The selective esterification of symmetrical diols is useful in
many situations,”" and has recently been addressed by Sharghi
et al.”* using Al,O3/ MeSO;H (AMA). The requirements of
high acidic reaction environment, long reaction time and high
temperature make this protocol unappealing. Although selective
monoacylation of diol by enzymatic kinetic resolution is well-
known,” the selectivity is due to configurational restriction for
the formation of enzyme—substrate complex that leads to the
acylated product. There is hardly any example of site selective
enzymatic esterification of diols having no asymmetric center.”
While solid-phase chemistry is well-suited to such problems,”
we are unaware of any report in the literature of a selective
monoesterification reaction in which the reacting species are
not covalently attached to the polymer support. Gratifyingly,

DOI: 10.1021/acscombsci.5b00086
ACS Comb. Sci. 2015, 17, 483—487


http://dx.doi.org/10.1021/acscombsci.5b00086

ACS Combinatorial Science

Technology Note

Table 4. Amidation between Carboxylic Acid and Amine
under Optimized Conditions”

Entry Acid Amine Product Time \(ﬁ/e')f
o
o
1 PhCH,NH, N 20 91
H 28
EAD
2 PhCOH O/ ©)‘\H o | 20| %
e
PhNH. 2 7
3 2 ©)L” - 5 5
6-Bromohexanoic it
4 one 1-CaHiNH, Br(CHz)s)L”’"'C“H"M 20 | 85
o
NH,
5 | 4-Nitrobenzoic acid O/ N 20 | 86
H o 32
O,N
o
34- MeO. N~ n-CgHy7
6 Dimethoxybenzoic n-CgHq7NH, H 33 30 67
acid MeO
o
7 Picolinic acid PhCH,NH; X N 20 81
l_n H u
>

“Reaction condition: carboxylic acid (1 mmol, 1 equiv), amine (1 equiv),
4-DMAP (3 equiv), 1 (1.5 equiv), 20 mL THF-DCM (1:3 v/v mixture),
room temperature. “Isolated yield.

the application of reagent 1 and DMAP to the esterification of
benzoic acid with 1,6-hexanediol gave the desired monoester in
88% yield (Scheme 2). Inspired by this finding, we expanded
this site-selective process to a variety of substrates as shown in
Table 3. To our pleasure, the results obtained in the esterifi-
cation of diols were, in general, good to excellent (entries 1—8).
Various protecting groups like -OTBS (entry 9), -OTHP
(entry 10) and acetals (entry 11) were unaffected under our
reaction conditions. However, under our optimized condition,
when soluble triphenylphosphonium-iodide was used instead
of reagent 1, monoesters were obtained in comparatively lower
yields (entries 1-2).

The esterification reaction conditions proved to be useful for
the synthesis of amides as well, as shown in Table 4. Primary
aliphatic, secondary aliphatic, and aromatic amines all were
incorporated with good yields.

Resin-bound triphenylphosphine, activated with iodine, has
been shown here to be a convenient reagent for the prepara-
tion of esters and amides in the presence of DMAP as base.
The requirement for 1.5 equiv of phosphine is counterbalanced
by the recyclability of the resin-bound reagent, isolation
of products by simple filtration, good yields, and by the utility
of the reaction in generating monoesters from symmetrical

diols.

B EXPERIMENTAL PROCEDURES

General Procedure for the Synthesis of Ester and Amide. To
a stirred solution of preformed complex 1 (1.5 mmol) in 20 mL of
anhydrous THF—DCM (1:3 v/v) was added 4-DMAP (3 mmol) and
carboxylic acid (1 mmol) at ambient temperature. After the mixture
was stirred for 10 min, alcohol or amine (1 mmol) was then added to
the reaction mixture, and reaction mixture was allowed to stir for the
time specified in the table. After completion of the reaction (as
indicated by TLC), the resultant mixture was filtered and washes with
dichloromethane (50 mL). The filtrate was then extracted and the
combined organic layer was dried with anhydrous sodium sulfate and
concentrated to give desired product in high purity.
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